Step of Proof: p-fun-exp-add
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-fun-exp-add
:
T
:Type,
n
,
m
:
,
f
:(
T
(
T
+ Top)).
f
^
n
+
m
=
f
^
n
o
f
^
m
latex
by (Auto
)
CollapseTHEN ((RWO "p-fun-exp-compose" 0)
CollapseTHEN ((Auto')
CollapseTHEN ((
C
Unfold `p-fun-exp` ( 0)
)
CollapseTHEN ((GenConcl p-id() =
id
THENA Auto)
CollapseTHEN (
C
RWO "primrec_add" 0 THEN Auto THEN Reduce 0 THEN Auto)
)
)
)
)
latex
C
.
Definitions
s
=
t
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
p-id()
,
Type
,
f
^
n
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
#$n
,
primrec(
n
;
b
;
c
)
,
x
.
A
(
x
)
,
f
o
g
,
t
T
,
{
i
..
j
}
,
x
:
A
.
B
(
x
)
,
,
{
x
:
A
|
B
(
x
)}
,
,
A
B
,
A
,
False
,
P
Q
Lemmas
p-fun-exp-compose
,
p-id
wf
,
primrec
add
,
primrec
wf
,
p-compose
wf
,
int
seg
wf
origin